EXERCISE 1.4
1. If A= {a, e, i, o, u}, B = {a, b, c} and C = {a, c, e, g}, then verify that:
(i) A ⋂ B = B ⋂ A     (ii) A U B = B U A    (iii) B U C = C U B 
(iv) B⋂ C = C ⋂ B   (v) A ⋂ C = C ⋂ A   (vi) A U C = C U A 
(i) A ⋂ B = B ⋂ A
Solution: 
A = {a, e, i, o, u}, B = {a, b, c} 
L.H.S    = A ⋂ B  
             = {a, e, i, o, u} ⋂ {a, b, c}
= { a }
and 
R.H.S   = B ⋂ A
             = {a, b, c} ⋂ {a, e, i, o, u}
             = { a } 
L.H.S = R.H.S
A ⋂ B = B ⋂ A
(ii) A U B = B U A 
Solution: 
A = {a, e, i, o, u}, B = {a, b, c} 
L.H.S    = A U B
             = {a, e, i, o, u} U {a, b, c}
= { a, b, c, e, i, o, u }
and 
R.H.S    = B U A
             = {a, b, c} U {a, e, i, o, u}
             = {  a, b, c, e, i, o, u } 
Hence Verified that 
L.H.S    =   R.H.S
A U B    =   B U A
(iii) B ⋂ C = C ⋂ B 
Solution: 
B = {a, b, c} and C = {a, c, e, g}
L.H.S    = B ⋂ C
             = {a, b, c} ⋂ {a, c, e, g}
             = { a, c } 
and 
R.H.S    = C ⋂ B
             = {a, c, e, g} ⋂ {a, b, c}
             = { a, c } 
It is Verified that 
L.H.S    =   R.H.S
A ⋂ B    =   B ⋂ A
(iv) B U C = C U B 
Solution: 
B = {a, b, c} and C = {a, c, e, g}
L.H.S    = B U C
             = {a, b, c} U {a, c, e, g}
             = { a, b, c, e, g }
and 
R.H.S    = C U B 
              = {a, c, e, g} U {a, b, c}
              = { a, b, c, e, g }
Hence Proved: 
L.H.S    =   R.H.S
A U B    =   B U A
(v) A ⋂ C = C ⋂ A
Solution: 
A = {a, e, i, o, u} and C = {a, c, e, g}
L.H.S    = A ⋂ C
              = {a, e, i, o, u} ⋂ {a, c, e, g}
              = { a, e }  
and 
R.H.S    = C ⋂ A 
              = {a, c, e, g} ⋂ {a, e, i, o, u}
              = { a, e } 
It is Verified that 
L.H.S    =   R.H.S
A U C    =   C U A
(v) A U C = C U A
Solution: 
A = {a, e, i, o, u} and C = {a, c, e, g}
L.H.S    = A U C
             = {a, e, i, o, u} U {a, c, e, g}
             = { a, e } 
and 
R.H.S    = C U A
              = {a, c, e, g} U {a, e, i, o, u}
              = { a, e }
It is Verified that 
L.H.S    =   R.H.S
A U C    =   C U A
2. If X = {1, 3, 7}, Y= {2, 3, 5} and Z = {1, 4, 8}, then verify that:
(i) X ⋂ (Y ⋂ Z) = (X ⋂ Y) ⋂ Z 
(ii) X U (Y U Z) = (X U Y) U Z 
(i) X ⋂ (Y ⋂ Z) = (X ⋂ Y) ⋂ Z
Solution: 
X = {1, 3, 7},  Y= {2, 3, 5}, Z = {1, 4, 8} 
L.H.S     = X ⋂ ( Y ⋂ Z )
              = {1, 3, 7} ⋂ ({2, 3, 5} ⋂ {1, 4, 8})
              = {1, 3, 7} ⋂ {  }  
              = {  }  
and 
R.H.S    = ( X ⋂ Y ) ⋂ Z
              = ({1, 3, 7} ⋂ {2, 3, 5}) ⋂ {1, 4, 8}
              = { 3 } ⋂ {1, 4, 8}  
              = {  } 
Hence Proved that 
L.H.S             =           R.H.S
X ⋂ ( Y ⋂ Z ) = ( X ⋂ Y ) ⋂ Z
(ii) X U (Y U Z) = (X U Y) U Z
Solution: 
X = {1, 3, 7},  Y= {2, 3, 5}, Z = {1, 4, 8} 
L.H.S     = X U ( Y U Z )
              = {1, 3, 7} U ({2, 3, 5} U {1, 4, 8})
              = {1, 3, 7} U { 1, 2, 3, 4, 5, 8 }  
              = { 1, 2, 3, 4, 5, 7, 8 }
and 
R.H.S     = ( X U Y ) U Z 
              = ({1, 3, 7} U {2, 3, 5}) U {1, 4, 8}
              = { 1, 2, 3, 5, 7 } U {1, 4, 8}  
              = { 1, 2, 3, 4, 5, 7, 8 }
By Comparing it is verified 
L.H.S    =   R.H.S
X U ( Y U Z ) = ( X U Y ) U Z
3. If S = {-2, -1, 0, 1}, T= {-4, -1, 1, 3} and U= {0, ±1, ±2}, then verify
that: 
(i) S ⋂ (T ⋂ U) = (S ⋂ T) ⋂ U (ii) S U (T U U) = (S U T) U U 
(i)  S ⋂ (T ⋂ U) = (S ⋂ T) ⋂ U  
Solution: 
S = {-2, -1, 0, 1},  T= {-4, -1, 1, 3}, U= {0, ±1, ±2}
L.H.S     = S ⋂ ( T ⋂ U )
               = {-2, -1, 0, 1} ⋂ ( {-4, -1, 1, 3} ⋂ {0, ±1, ±2} )
               = {-2, -1, 0, 1} ⋂ { -1, 1 }  
               = { -1, 1 } 
Now
R.H.S     = (S ⋂  T) ⋂ U
               = ( {-2, -1, 0, 1} ⋂  {-4, -1, 1, 3} ) ⋂ {0, ±1, ±2}
               = {-1, 1} ⋂ {0, ±1, ±2}  
               = { -1, 1 } 
It is Proved that 
L.H.S    =   R.H.S
S ⋂ ( T ⋂ U ) = (S ⋂  T) ⋂ U
(ii) S U (T U U) = (S U T) U U
Solution: 
S = {-2, -1, 0, 1},  T= {-4, -1, 1, 3}, U= {0, ±1, ±2}
L.H.S     = S U ( T U U )
              = {-2, -1, 0, 1} U ( {-4, -1, 1, 3} U {0, ±1, ±2} )
              = {-2, -1, 0, 1} U { -4, -2, -1, 0, 2, 1, 3 }  
              = { -4, -2, -1, 0, 2, 1, 3  }
Now
R.H.S     = (S U T) U U 
               = ( {-2, -1, 0, 1} U  {-4, -1, 1, 3} ) U {0, ±1, ±2} 
               = { -4, -2, -1, 0, 1, 3 } U {0, ±1, ±2}  
               = { -4, -2, -1, 0, 2, 1, 3 }
It is Verified that 
L.H.S    =   R.H.S
S U ( T U U ) = (S U T) U U
4. If O = {1, 3, 5, 7.....}, E = {2, 4, 6, 8......} and N = {1, 2, 3, 4....}, then
verify that: 
(i) O ⋂ (E ⋂ N) = (O ⋂ E) ⋂ N 
(ii) O U (E U N) = (O U E) U N
(i)  O ⋂ (E ⋂ N) = (O ⋂ E) ⋂ N 
Solution: 
O = {1, 3, 5, 7.....},  E = {2, 4, 6, 8......}, N = {1, 2, 3, 4....}
L.H.S     = O ⋂ ( E ⋂ N )
              = {1, 3, 5, 7.....} ⋂ ( {2, 4, 6, 8......} ⋂ {1, 2, 3, 4....} )
              = {1, 3, 5, 7.....} ⋂ { 2, 4, 6, 8...... }  
              = {     }  
Now
R.H.S     = (O ⋂  E) ⋂ N 
               = ( {1, 3, 5, 7.....} ⋂  {2, 4, 6, 8......}  ) ⋂ {1, 2, 3, 4....}
               = {    }  ⋂ {1, 2, 3, 4....}  
               = {    } 
Hence Verified that 
L.H.S    =   R.H.S
O ⋂ ( E ⋂ N ) = (O ⋂  E) ⋂ N
(ii) S U (T U U) = (S U T) U U
Solution: 
O = {1, 3, 5, 7.....},  E = {2, 4, 6, 8......}, N = {1, 2, 3, 4....}
L.H.S     = O U ( E U N )
               = {1, 3, 5, 7.....} U ( {2, 4, 6, 8......} U {1, 2, 3, 4....} )
               = {1, 3, 5, 7.....} U { 1, 2, 3, 4, ...... }  
               = { 1, 2, 3, 4..... }
Now
R.H.S     = (O U E) U N 
               = ( {1, 3, 5, 7.....} U  {2, 4, 6, 8......}  ) U {1, 2, 3, 4....}
               = { 1, 2, 3, 4, 5, 6, 7.....   }  U {1, 2, 3, 4....}  
               = { 1, 2, 3, 4..... }
By Comparing, it is Verified that 
L.H.S    =   R.H.S 
O U ( E U N ) = (O U E) U N
5. If U = {a, b, c, ....,z}, S = {a, e, i, o, u} and T = {x, y, z}, then verify that: 
(i) S U ∅ = S (ii) T ⋂ U = T (iii) S ⋂ S' = ∅ (iv) T U T' = U 
(i) S U ∅ = S
Solution: 
S = {a, e, i, o, u} and ∅ = {   }
L.H.S    = S U ∅
             = { a, e, i, o, u } U {   }
             = { a, e, i, o, u } 
             = S = R.H.S
It is Verified that 
L.H.S    =   R.H.S 
S U ∅    =   S
(ii) T ⋂ U = T
Solution: 
T = {x, y, z} and U = {a, b, c, ....,z}
L.H.S    = T ⋂ U
             = {x, y, z} ⋂ { a, b, c, ....,z }
             = { x, y, z } 
             = T  = R.H.S
It is Verified that 
L.H.S    =   R.H.S 
T ⋂ U    =   T
(iii) S ⋂ S' = ∅
S = {a, e, i, o, u}, U = {a, b, c, ....,z}
First we have to fine S'
S' = U - S = {a, b, c, ....,z} / {a, e, i, o, u}
    = { b, c, d, f, g, h, j, k, l , m, n, p, q, r, s t, v, w, x, y, z}
L.H.S    = S ⋂ S'
             = { a, e, i, o, u }⋂{b,c,d,f,g,h,j,k,l,m,n,p,q,r,st,v,w,x,y,z}
             = {   } 
             = ∅ = R.H.S
It is Verified that 
L.H.S    =   R.H.S 
S ⋂ S'    =   ∅
(iv) T U T' = U 
T = {x, y, z}, U = {a, b, c, ....,z}
First we have to fine T'
T' = U - S = {a, b, c, ....,z} / {x, y, z}
    = { a, b, c, d, ....... w }
L.H.S    = T U T'
             = { x, y, z } U { a, b, c, d, ....... w }
             = { a, b, c, ....,z } 
             = U = R.H.S
It is Verified that 
L.H.S    =   R.H.S 
T ⋂ T'    =   U
6. If A = {1, 7, 9, 11}, B = {1, 5, 9, 13}, and C = {2, 6, 9, 11}, then verify
that: 
(i) A - B ≠ B - A (ii) A - C ≠ C - A 
(i) A - B ≠ B - A
Solution: 
A = {1, 7, 9, 11} and B = {1, 5, 9, 13}
L.H.S    = A - B
             = {1, 7, 9, 11} - {1, 5, 9, 13}
             = { 7, 11 } 
and 
R.H.S    = B - A
              = {1, 5, 9, 13} - {1, 7, 9, 11}
              = { 5, 13 } ≠  L.H.S
It is Verified that 
L.H.S    ≠   R.H.S
A - B     ≠   B - A
(i) A - C ≠ C - A
Solution: 
A = {1, 7, 9, 11} and C = {2, 6, 9, 11}
L.H.S    = A - C
             = {1, 7, 9, 11} - {2, 6, 9, 11}
             = { 1, 7 } 
and 
R.H.S    = B - A
              = {2, 6, 9, 11} - {1, 7, 9, 11}
              = { 2, 6 } ≠  L.H.S
It is Verified that 
L.H.S    ≠   R.H.S
A - C     ≠   C - A
7. If U = {0, 1, 2,....,15}, L = {5, 7, 9,....,15}, and M = {6, 8, 10, 12, 14},
then verify the identity properties with respect to union and
intersection of sets.
Answer: 
(1) Identity Property with respect to Union for Set  A is A U ∅ = A (General Form)
Solution: 
(i) Identity Property with respect to Union for Set L = {5, 7, 9,....,15} is  L U ∅ = L
L.H.S = L U ∅
= {5, 7, 9,....,15} U { }
= {5, 7, 9,....,15} = L = R.H.S
Hence It is Verified that 
L.H.S    =   R.H.S
L U ∅     =     L
(ii) Identity Property with respect to Union for Set M = {6, 8, 10, 12, 14} is  M U ∅ = M
L.H.S = M U ∅
= {6, 8, 10, 12, 14} U { }
= {6, 8, 10, 12, 14} = L = R.H.S
Hence It is Verified that 
L.H.S    =   R.H.S
M U ∅     =     M
(2) Identity Property with respect to Intersection for Set A is A ⋂ U = A (General Form)
Solution: 
(i) Identity Property with respect to Intersection with respect to Set L = {5, 7, 9,....,15} is L ⋂ U = L, 
U = {0, 1, 2,....,15}
L.H.S    = L ⋂ U
             = {5, 7, 9,....,15} ⋂ { 0, 1, 2,....,15 }
             = {5, 7, 9,....,15} = L = R.H.S
Hence It is Verified that 
L.H.S    =   R.H.S
L ⋂ U     =     L
(ii) Identity Property with respect to Intersection with respect to Set M = {6, 8, 10, 12, 14} is M ⋂ U = M
L.H.S    = M ⋂ U
= {6, 8, 10, 12, 14} ⋂ { 0, 1, 2,....,15 }
= {6, 8, 10, 12, 14} = L = R.H.S
Hence It is Verified that
L.H.S = R.H.S
M ⋂ U = M
************************
Job & Exam Mathematics Rare (JEMrare)
************************
***************************************************************
Shortcut links for:
1. Real Life Word Problems on Financial Mathematics, Property Tax, General Sale Tax (GST), Zakat, Ushr, Profit and Loss, Markup, Percentage, Proportion.
2. 5th class Notes: English, Social Study (S.St.), General Science (G.Sc.), Urdu (اُردو), Islamiat (اسلامیات), Mathematics
************************************
1. Website for School and College Level Physics   2. Website for School and College Level Mathematics  3. Website for Single National Curriculum Pakistan - All Subjects Notes 
© 2022-23  Academic Skills and Knowledge (ASK)     
Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.
1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 
© 2022-23  Academic Skills and Knowledge (ASK)     
Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.

 
 
 
 
 
0 Comments